Les ouvrages de nos Alumni

User-friendly Introduction to PAC-Bayes Bounds

Éditeur :
Now Publishers
Date de publication :

Probably almost correct (PAC) bounds have been an intensive field of research over the last two decades. Hundreds of papers have been published and much progress has been made resulting in PAC-Bayes bounds becoming an important technique in machine learning.

The proliferation of research has made the field for a newcomer somewhat daunting. In this tutorial, the author guides the reader through the topic’s complexity and large body of publications. Covering both empirical and oracle PAC-bounds, this book serves as a primer for students and researchers who want to get to grips quickly with the subject. It provides a friendly introduction that illuminates the basic theory and points to the most important publications to gain deeper understanding of any particular aspect.


Présentation de l'auteur
Ancien élève de l'ENSAE (2003) Pierre ALQUIER à soutenu sa thèse à Paris 6 en 2006.
Il est enseignant-chercheur en statistique et machine learning depuis 2007 dans divers établissements, en particulier professeur à l'ENSAE (2014-2019), chercheur au RIKEN à Tokyo (2019-2022) et actuellement professeur à l'ESSEC Business School, campus de Singapour.
Ses domaines de recherche sont les suivants: statistique bayésienne, statistique en grande dimension.